A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark

S

USN			10AL51
		Fifth Semester B.E. Degree Examination, June/July 2015	
		Management and Entrepreneurship	,
Tin	1e: 3	hrs. Max. M	1arks:100
No	to	Answer any EWE full questions educting adapt TWO superious from	.07
INU	ne:	Answer any FIVE juit questions, selecting atleast IWO questions from	eacn part.
		<u>PART – A</u>	
1	a.	Define Management. Explain different levels of Management.	(05 Marks)
	b.	Explain functional area of Management.	(05 Marks)
	c.	What is the profession and administration management?	(10 Marks)
2	a.	Give any four important reasons for the performance of planning functions.	(05 Marks)
	b.	Difference between strategic planning and tactical planning.	(05 Marks)
	c.	What is decision making? Explain different types of decisions.	(10 Marks)
3	a.	Define an organization and explain principles of organisation.	(05 Marks)
	b.	Write a brief note on the following : i) MBO ii) MBE.	(05 Marks)
	c.	Discuss any two types of organization structures with highlighting their merits a	nd demerits.
			(10 Marks)
4	a.	Briefly explain the purpose of communication.	(05 Marks)
	b.	Briefly explain the essentials of a sound control system.	(05 Marks)
	c.	Explain Maslow's and Heryburg theories of Human motivation.	(10 Marks)
		<u>PART – B</u>	
5	a.	Who is an Enterpreneur? Explain the characteristics of an Enterpreneur.	(05 Marks)
	b.	Explain the role of an Enterpreneur in economic development of any country.	(05 Marks)
	c.	Explain the barrier involved in entrepreneurship.	(10 Marks)
6	a.	What is Small Scale Industry? Briefly explain the need and rationale of SSI's.	(05 Marks)
	b.	Explain briefly the Government support for SSI during 5 year plan.	(05 Marks)
	c.	Explain the objectives and functions of WTO.	(10 Marks)
7	a.	Write functions of District industries centers / single window concept.	(05 Marks)
	b.	Write a short note on NSIC.	(05 Marks)
	c.	Explain the objectives and functions provided by TECSOK and KSSIDC.	(10 Marks)
8	a.	Briefly outline the contents of a project.	(05 Marks)
	b.	What is Financial and Social feasibility study?	(05 Marks)
	c.	What is Project Appraisal? Explain the steps followed in project appraisals.	(10 Marks)

USN

Fifth Semester B.E. Degree Examination, June/July 2015

Digital Signal Processing

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

3

1	a.	Compute the DFT of the sequence $x(n) = \cos\left(\frac{n\pi}{4}\right)$ for N = 4, plot $ x(k) $ and $\angle x(k)$.
		(09 Marks)

- b. Find the DFT of the sequence $x(n) = 0.5^n u(n)$ for $0 < n \le 3$ by evaluating $x(n) = a^n$ for 0 < n < N - 1. (07 Marks) (04 Marks)
- с. Find the relation between DFT and Z transform.
- 2 State and prove the linearity property of DFT and symmetrical property. a. (05 Marks) The five samples of the 8 point DFT x(k) are given as b. x(0) = 0.25, x(1) = 1.25 - j0.3018, x(6) = x(4) = 0, x(5) = 0.125 - j0.0518.(05 Marks)
 - Determine the remaining sample if the sequence x(n) is real valued? For $x(n) = \{1, -2, 3-4, 5, -6\}$, without computing its DFT, find the following с.

i) x (o) ii)
$$\sum_{k=0}^{3} \times (k)$$
 iii) X(3) iv) $\sum_{k=0}^{5} 1 \times (k) |^{2}$ v) $\sum_{k=0}^{5} (-1)^{k} \times (k)$ (10 Marks)

- Consider a FIR filter with impulse response a. $h(n) = \{1, 1, 1\}, \text{ if the input is }$ $X(n) = \{1, 2, 0, -3, 4, 2, -1, 1, -2, 3, 2, 1, -3\}$. Find the output y(n) using overlap add method. (12 Marks)
 - b. What is in plane computation? What is total number of complex additions and multiplication required for N = 256 point, if DFT is computed directly and if FFT is used? (03 Marks)
- c. For sequence $x(n) = \{2, 0, 2, 0\}$ determine x(2) using Goertzel Filter. Assume the zero initial conditions. (05 Marks)
- 4 Find the circular convolution of $x(n) = \{1, 1, 1, 1, 1\}$ and $h(n) = \{1, 0, 1, 0\}$ using DIF-FFT a. algorithm. (12 Marks)
 - Derive DIT-FFT algorithm for N = 4. Draw the complete signal How graph? b. (08 Marks)

PART – B

- 5 Design a Chebyshev analog filter (low pass) that has a -3dB cutoff frequency of 100 rad/sce a. and a stopband attenuation 25dB or greater for all radian frequencies past 250 rad/sec
 - (14 Marks) b. Compare Butterworth and Chebyshev filters. (03 Marks)

(10 Marks)

- c. Let $H(s) = \frac{1}{s^2 + s + 1}$ represent the transfer function of LPF with a passband of 1 rad/sec. Use frequency transformation (Analog to Analog) to find the transfer function of a band pass fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec. (03 Marks)
- Obtain block diagram of the direct form I and direct form II realization for a digital IIR fitter 6 a. described by the system function.

H(z) =
$$\frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$$

- b. Find the transfer function and difference equation realization shown in Fig.Q 6(b).
 - y(n)Fig.Q 6(b)

(06 Marks)

c. Obtain the direct form realization of linear phase FIR system given by $\frac{2}{3}z^{-1} + \frac{15}{8}z^{-2}$

$$H(z) = 1 + \frac{2}{3}$$

a. The desired frequency response of a low pass fitter is given by 7

$$H_{d}(e^{jw}) = H_{d}(\omega) = \begin{cases} e^{-j3w} |\omega| \frac{3\pi}{4} \\ 0 & \frac{3\pi}{4} < |\omega| < 0 \end{cases}$$

Determine the frequency response of the FIR if Hamming window is used with N = 7.

π

b. Compare IIR filter and FIR filters.

c. Consider the pole-zero plot as shown in Fig Q.7(c) i) Does it represent an FIR fitter? ii) Is it linear phase system? (04 Marks)

(04 Marks)

(10 Marks)

8 a. Design a digital filter H(z) that when used in an A/D-H(z)-D/A structures gives an equivalent analog filter with the following specification : Passband ripple : ≤ 3.01dB
Passband edge : 500Hz
Stopband attenuation : ≥ 15dB
Stopband edge : 750 Hz
Sample Rate : 2 KHz
Use Bilinear transformation to design the filter on an analog system function. Use Butterworth filter prototype. Also obtain the difference equation. (14 Marks)

b. Transform the analog filter

$$H_a(s) = \frac{s+1}{s^2 + 5s + 6}$$

Into H(z) using impulse invariant transformation Take T = 0.1 Sec.

Fifth Semester B.E. Degree Examination, June/July 2015 Analog Communication

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.

2. Missing data be suitably assumed.

3. Standard notations are used.

4. Draw neat diagrams, wherever necessary.

PART – A

- a. Define joint probability density function. Prove that the total volume under the surface represented by the joint PDF is always 1. (07 Marks)
 - b. State and prove central limit theorem.
 - c. Find the CDF for an experiment of tossing a coin. The random variable maps head (H) with value 1 and tail (T) with value 1.
 (06 Marks)
- 2 a. Explain the generation of DSB-SC using ring modulator. (07 Marks)
 - b. Explain with block diagrams, quadrature carrier multiplexing and demultiplexing system.
 - c. A 500W carrier is modulated on a depth of 70%, calculate the total power in the modulated wave in the following forms of AM.
 - i) Double sideband with full carrier.
 - ii) Double sideband suppressed carrier.
 - iii) Single sideband suppressed carrier.
- 3 a. Define Hilbert transform. Using Hilbert transform, derive the equation for SSB signals only with USB and rejecting the LSB. Explain with block diagram. (07 Marks)
 - b. With block diagram explain third method for generation of SSB modulated waves.
 - c. $X(t) = A_c m(t) \cos 2\pi f_c t$, obtain its pre-envelope and complex conjugate of pre-envelope. (06 Marks)
- 4 a. Explain the method of envelope detection of a USB wave plus carrier. (06 Marks)
 - b. With the help of block diagram, explain the working of FDM system. (07 Marks)
 - c. Explain with a block diagram working of a superheterodyne receiver. Mention its advantages over TRF receiver. (07 Marks)

PART – B

- a. Derive the equation for FM waves. Define modulation index, maximum deviation and bandwidth of a FM signal. (07 Marks)
 - b. With the help of block diagram, explain the generation of narrowband FM using DSB-SC modulator. (07 Marks)
 - c. A carrier wave of amplitude 5V and frequency 90MHz is frequency modulated by a sinusoidal voltage of amplitude 5V and frequency 15kHz. The frequency deviation constant is 1 kHz/V. Sketch the spectrum of the modulated FM wave. Given $J_0 = 0.96$, $J_1 = 0.18$ and $J_2 = 0.02$. (06 Marks)

5

USN

1

(07 Marks)

(07 Marks)

(06 Marks)

6	a.	Explain the working of a balanced slope detector.	(07 Marks)
	b.	With a block diagram, explain the working of a FM stereo multiplexing.	(07 Marks)
	c.	Explain the linear model of phase locked loop.	(06 Marks)

7 a. Derive Friiss's formula for cascade connection of two post network. (07 Marks)
b. Define noise factor of a network. Show that by proving suitable equations that with the increase in noise factor the noise power at the output will also increases. (07 Marks)

- c. If each stage has a gain of 10dB and noise figure of 10dB. Determine the overall noise figure of a two stage cascaded amplifier. (06 Marks)
- 8 a. Derive the equation for the figure of merit of an AM receiver operating on single tone AM.
 - b. Derive the equation for the signal to noise ratio at the output of the DSB-SC receiver.
 - c. Explain about pre-emphasis and de-emphasis in FM.

Time: 3 hrs.

USN

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART – A

- 1 Derive: a.
 - i) Voltage and current equations on a transmission line.
 - ii) The characteristic impedance of the line.
 - iii) Propagation constant.
 - iv) Phase velocity.
 - V) The relative phase velocity factor.
 - (12 Marks) What is impedance matching? Explain single stub matching and double stub matching. b.

(08 Marks)

- 2 Derive $TE_{m,n}$ field equation in rectangular waveguide and define cut off wave number, a. cutoff frequency, propagation constant, phase velocity, character wave impedance and wave length in the guide. (10 Marks)
 - Explain why TEM mode is not possible in waveguides. b. (02 Marks)
 - Explain faraday rotation and discuss microwave circulator. C. (08 Marks)
 - Discuss the criterion for classifying the modes of operation for Gunn effect diodes. For a a. transit time domain mode, the domain velocity is equal to the current drift velocity is 10^7 cm/s. Determine the drift length of the diode of a frequency of 8GHz. (07 Marks)
 - b. Explain how carrier current $I_o(t)$ and external current $I_e(t)$ are generated when a read diode is mounted in a microwave resonant circuit, with the aid of diagrams for structure of read diode, field distribution, applied ac voltage and $I_o(t)$ and $I_e(t)$. (07 Marks)
 - c. Write equivalent circuit for a parametric amplifier. AN up-converter parametric amplifier has the following parameters:
 - i) Figure of merit; $\gamma Q = 8$
 - Ratio of output frequency over signal frequency $f_o/f_s = \delta$ ii)
 - iii) Factor of merit figure; $\gamma = 0.2$
 - Diode temperature $T_d = 300^\circ t$ iv)
 - Calculate: i) The power gain in dB; ii) The noise figure in dB; iii) Bandwidth. (06 Marks)
 - What is a reciprocal network? For a reciprocal microwave N-port network prove that the a. admittance and impedance matrices are symmetrical. (07 Marks)
 - State and prove the following properties of S-parameters: b.
 - Symmetry property for a reciprocal network. i)
 - ii) Unitary property for a lossless junction.

(08 Marks)

The impedance matric of a passive network is given by $Z = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$, find scattering matrix.

(05 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

3

4

C.

PART – B

5	a.	Why are co-axial connectors and adapters used? List six types of co-axial connectors	ectors with
		their frequency ranges.	(05 Marks)
	b.	What are waveguide tees? Explain with the aid of neat diagram, E-plane tree a	nd H-plane
		tree.	(09 Marks)
	C.	List four applications of Magic-T. Explain Magic-Tee as a microwave mixer.	(06 Marks)
6	a.	Show that, for a micro strip line, the quality factor is $Q_c = 0.636 h_{\sqrt{\sigma} f_{CH_2}}$.	(07 Marks)
	h	A gold parallel strip line has the following parameters:	
	0.	Relative dielectric constant of polyethylene $\varepsilon_{rd} = 2.25$.	
		Strip width: $W = 25$ mm.	
		Separation width: $d = 5mm$	
		Calculate:	
		i) Characteristic impedance of the strip line.	
		ii) Strip-line capacitance.	
		iii) Strip-line inductance.	
		iv) Phase velocity.	(08 Marks)
	c.	Write a note on coplanar stripline.	(05 Marks)
7	a.	What is radar? With a neat block diagram, explain the operation of radar.	(08 Marks)
	b.	Explain the various forms of radar equation.	(06 Marks)
	c.	Discuss the applications the radar.	(06 Marks)
8	a.	With a neat block diagram, explain CW Doppler radar.	(08 Marks)
	b.	Explain a simple MTI delay line canceller.	(08 Marks)
	C.	Discuss the difference between MTI and Doppler radar.	(04 Marks)

Fifth Semester B.E. Degree Examination, June/July 2015 Information Theory and Coding

Time: 3 hrs.

1

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Derive an expression for average information content (entropy) of long independent messages. (05 Marks)
 - b. Define information [I], average information, information rate, symbol rate and mutual information. (05 Marks)
 - c. For the Markov source model shown below compute initial probabilities, state entropy source entropy and show that $G_1 > G_2 > H(s)$. (10 Marks)

Fig.Q.1(c)

- **2** a. Explain Shannon's noiseless encoding algorithm.
 - b. Using Shannon's binary encoding algorithm, find all the code words for the symbols given below also find its efficiency and redundancy. Given: (08 Marks)

S ₀	S_1	S ₂	S_3	S_4
0.55	0.15	0.15	0.1	0.05

- c. State all the properties of entropy and prove the external property.
- 3 a. For a channel whose matrix is as given below for which $P(x_1) = 1/2$; $P(x_2) = P(x_3) = 1/4$ and $r_s = 10,000$ sym/sec. Find H(x), A(y), H(x, y), H(x/y), H(y/x), I(x,y). Also find information rate at transmitter (R_{in}) and information rate at receiver (R_t), capacity, efficiency and redundancy.

$$P(y/x) = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.1 & 0.8 & 0.1 \\ 0 & 0.2 & 0.8 \end{bmatrix}$$

- b. A source produces 9 symbols with probabilities {0.36, 0.24, 0.12, 0.08, 0.08, 0.07, 0.03, 0.02}.
 - i) Construct Huffman binary code and determine its efficiency (η) and redundancy (R).
 - ii) Construct Huffman ternary code and find its efficiency (η) and redundancy (R).
 - (10 Marks)

(04 Marks)

(08 Marks)

(10 Marks)

- 4 a. State and explain Shannon Hartley law. Derive an expression for the upper limit of the channel capacity. (07 Marks)
 - b. Define mutual information and explain all the properties of mutual information. (06 Marks)
 - c. Two noisy channels are cascaded whose channel matrices are given by $\begin{bmatrix} 1/5 & 1/5 & 3/5 \end{bmatrix}$

 $P(y/x) = \begin{bmatrix} 1/5 & 1/5 & 3/5 \\ 1/2 & 1/3 & 1/6 \end{bmatrix} \qquad P(z/y) = \begin{bmatrix} 0 & 3/5 & 2/5 \\ 1/3 & 2/3 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \text{ with } P(x_1) = P(x_2) = 1/2, \text{ find}$

the over all mutual information I(x,z) and I(x,y). 1 of 2

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be

PART – B

- 5 a. Draw the block diagram of a digital communication system and explain the function of each block. (06 Marks)
 - b. The parity check bits of a (7, 4) Hamming codes are generated by
 - $c_5 = d_1 + d_3 + d_4$
 - $c_6 = d_1 + d_2 + d_3$
 - $c_7 = d_2 + d_3 + d_4$
 - where d_1 , d_2 , d_3 and d_4 are message bits
 - i) Find generator matrix (G) and parity check matrix [H] for this code.
 - ii) Prove that $GH^{T} = 0$.
 - iii) Find the minimum weight of this code.
 - iv) Find error detecting and correcting capability.
 - v) Draw encoder circuit and syndrome circuit for the same.
 - c. Compare fixed length code and variable length code.
- 6 a. A (15, 5) linear cyclic code has a generator polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$.
 - i) Draw the cyclic encoder and find codeword for the message polynomial. $D(x) = 1 + x^2 + x^4$ in systematic form by listing the states of the shift register.
 - ii) Draw the syndrome calculator circuit for given g(x). (12 Marks)
 - b. For the given generator polynomial find generator matrix and parity check matrix and find codeword for (7, 3) Hamming code and its hamming weight $g(x) = 1 + x + x^2 + x^4$.

(08 Marks)

(12 Marks)

(02 Marks)

- 7 Write short notes on:
 - a. BCH codes
 - b. Shortened cyclic code
 - c. RS code
 - d. Golay code
 - e. Burst error correcting code.
- 8 a. Consider the convolutional encoder shown below:
 - i) Draw the state diagram
 - ii) Draw code tree
 - iii) Find the codeword for the message sequence 10111.

- b. For a (2, 1, 2) convolutional encoder with generator sequence $g^1 = 111$ and $g^{(2)} = 101$.
 - i) Draw convolutional encoder circuit.
 - ii) Find the codeword for the message sequence 10111 using time domain approach and transfer domain approach. (10 Marks)

* * * * *

(10 Marks)

(20 Marks)

USN

Fifth Semester B.E. Degree Examination, June/July 2015 Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

$\mathbf{PART} - \mathbf{A}$

1	a.	Discuss the nMOS enhancement mode transistor for different conditions of vds.	(06 Marks)
	b.	Elaborate the concept of P-well falorication with neat sketches.	(10 Marks)
	c.	Compare CMOS and bipolar technologies.	(04 Marks)
2	a.	Obtain the transfer characteristics of a CMOS inverter and mark all the regions. S status of PMOS and NMOS transistors.	Showing the (10 Marks)
	b.	Illustrate the schematic and stick diagram for the expression $Y = \overline{A(B+C)}$.	(10 Marks)
_			
3	a.	Discuss in detail the λ - based design for CMOS	(10 Marks)
	b.	Realize a 3-input NAND gate for clocked CMOS logic and also for CMOS do	omino logic.
			(06 Marks)
	c.	Discuss the working of pseudo nMOS logic with suitable example.	(04 Marks)

4 a. Describe the delay unit τ in terms of sheet resistance and area capacitance for the CMOS inverter pain shown, calculate the total delay. (08 Marks)

- b. Explain in brief the wiring capacitances.
- c. Narrate the steps involved in calculate the sheet resistance of :
 i) Transistor channel ii) nMOS inverter iii) CMOS inverter. (06 Marks)

PART - B

5 a. What are the scaling factors for the following device parameters :

i) Gate capacitance c_g ii) max-operating frequency f_0 iii) current density iv) power dissipation per gate p_g v) power speed product PT. (10 Marks)

b. Design a parity generator with the following specifications and draw the stick diagram of one basic cell.

(10 Marks)

6	a.	Draw the basic form of a two-phase clock generator and explain in detail.	(08 Marks)
	b.	Discuss the architectural issues to be followed in the design of a VLSI subsystem.	(06 Marks)
	c.	Explain the precharge bus approach used in system design.	(06 Marks)
7	a.	Explain the three transistor dynamic RAM cell.	(10 Marks)
	b.	Discuss the Bangh-Wooley method used for two's complement multiplication.	(10 Marks)
8	a.	Narrate the meaning of "Real Estate" in VLSI design.	(05 Marks)
	b.	Explain testing and testability in detail.	(10 Marks)
	c.	Write a short note on scan design techniques.	(05 Marks)
